Affiliation:
1. Department of Civil and Industrial Engineering, University of Pisa, Italy
2. Fermilab, Batavia, IL, USA
Abstract
The road transportation of critical components for cryogenic cryomodules is a challenging task. Indeed, the shipping and the handling of fundamental sub-assemblies can expose these components to harmful dynamic loads that can jeopardize their structural integrity. This article has the purpose of developing a finite element multibody model capable of assessing the acceleration on a test coupler for a cavity of the Single Spoke Resonator 1 subjected to a typical road transportation trip. A multibody model consisting of rigid bodies and finite element–imported flexible bodies has been created allowing a comparison of the simulated and experimental acceleration. Afterwards, an experimental on-road test, whose set-up is described in this article, has been carried out at Fermilab with instrumented components. Being able to effectively simulate and validate the dynamic effects on such sub-assemblies makes it possible, for the future, to simulate more complex structures subject to dynamic loadings, such as the entire cryomodules during shipping. Furthermore, the results from the simulations can be used to guide the design of new suspension systems suitable for the reduction mitigation of structural vibration during the road transportation of cryomodules.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献