Early detection of tooth crack damage in gearbox using empirical wavelet transform combined by Hilbert transform

Author:

Merainani Boualem1,Benazzouz Djamel1,Rahmoune Chemseddine1

Affiliation:

1. Solid Mechanics and Systems Laboratory (LMSS), University M’hamed Bougara Boumerdes, Algeria

Abstract

Hilbert-Huang Transform (HHT) has been renowned for its capacity to reveal fault indicating information issue from vibration signals. It uses Empirical Mode Decomposition (EMD) to decompose a signal accordingly to its contained information into a set of Intrinsic Mode Functions (IMFs). Then, the instantaneous frequencies are performed of each IMF using Hilbert Transform (HT). However, the HHT has some disadvantages which are caused by the EMD technique. The EMD has the mode mixing problem that may occur between IMFs, it causes the End Effect phenomenon, which leads to a wrong instantaneous values at both sides of the signal. Furthermore, its lack of mathematical basis. To overcome the HHT inherent problems, we propose the use of the Empirical Wavelet Transform (EWT) which designs an appropriate wavelet filter bank fully depends on the processed signal with HT in the early detection and condition monitoring of tooth crack fault. In this paper, we develop a dynamic model describing a single stage spur gear in normal and abnormal functioning. Results of analyzing the pinion’s vibration displacement show that the proposed approach denoted (HEWT) successfully detect the tooth crack at a much earlier stage of damage development even though in noisy environment. Performance evaluation and comparison between HEWT and HHT methods show that the HEWT is better sensitive to tooth crack fault detection in gearbox systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3