Calculation of the critical delay for the double inverted pendulum

Author:

Molnar Csenge A1ORCID,Balogh Tamas1,Boussaada Islam2,Insperger Tamas1

Affiliation:

1. Department of Applied Mechanics, Budapest University of Technology and Economics and MTA-BME Lendulet Human Balancing Research Group, Hungary

2. Laboratoire des Signaux et Systemes (L2S), Universite Paris Saclay, CNRS-Universite Paris Sud-CentraleSupelec, France

Abstract

Single and double inverted pendulum systems subjected to delayed state feedback are analyzed in terms of stabilizability. The maximum (critical) delay that allows a stable closed-loop system is determined via the multiplicity-induced-dominancy property of the characteristic roots, that is the dominant (rightmost) roots are associated with higher multiplicity under certain conditions of the system parameters. Other methods such as tracking the changes of the D-curves with increasing delay and the Walton–Marshall method are also demonstrated for the example of the single pendulum. For the double inverted pendulum subjected to full state feedback, the number of control gains is four, and application of numerical methods requires therefore high computational effort (i.e. optimization in a four-dimensional space). It is shown that, with the multiplicity-induced-dominancy–based approach, the critical delay and the associated control gains can be determined directly using the characteristic equation and its derivatives.

Funder

Hungarian-French Bilateral Scientific and Technological Cooperation

Hungarian-Chinese Bilateral Scientific and Technological Cooperation

ÚNKP-19-3 New National Excellence Program of the Ministry for Innovation and Technology

National Research, Development, and Innovation Fund

French National Research Agency

IDEX Paris-Saclay

Hubert Curien (PHC) Balaton

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3