An implicit discretization-based adaptive reaching law for discrete-time sliding mode control systems

Author:

Wang Cong1ORCID,Xia Hongwei1,Ren Shunqing1

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin, China

Abstract

In conventional reaching law approaches, the disturbance suppression is achieved at the cost of high-frequency chattering or increasing the complexity of algorithm such as adding a high-order disturbance compensator. This paper presents the design and analysis of a novel implicit discretization-based adaptive reaching law for discrete-time sliding mode control systems. First, the implicit Euler technique is introduced into the design of discrete reaching laws, and it is proved to be able to eliminate numerical chattering completely. By using a self-adaptive power term, the newly designed reaching law can obtain an arbitrarily small boundary layer of sliding surface, and at the different phases of sliding mode motion, the adaptive power parameter can automatically regulate its value to guarantee globally fast convergence without destroying the accuracy of sliding variable. Then, based on a predefined trajectory of sliding variable, the discrete-time sliding mode control law is developed to realize high control accuracy without additional design. Compared with previous methods, the main contribution of proposed reaching law lies in that it can acquire high-precision sliding mode motion and simultaneously eliminate numerical chattering in spite of complex uncertainties only by adjusting the adaptive power parameter. Finally, a simulation example on the piezomotor-driven linear stage is provided to verify the theoretical results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3