Computational investigation and passive control of vehicle sunroof buffeting

Author:

He Yansong12ORCID,Zhang Quanzhou13ORCID,An Changfa3,Wang Yong3,Xu Zhongming12,Zhang Zhifei12

Affiliation:

1. School of Automotive Engineering, Chongqing University, PR China

2. The State Key Laboratory of Mechanical Transmission, Chongqing University, PR China

3. China Automotive Engineering Research Institute Co. Ltd, PR China

Abstract

A computational fluid dynamics simulation method based on large eddy simulation is presented and applied to compute the sunroof buffeting of a sport utility vehicle. The simulation result, i.e. the buffeting level curve, coincides well with the road test. The simulation method is then employed to investigate the sunroof buffeting of a vehicle during the development process in the range of 30 km/h–90 km/h. The results show that the most severe sunroof buffeting occurs at 70 km/h, which corresponds to the resonant frequency of the cabin. Flow field visualizations reveal that strong pressure fluctuations are generated inside the cabin due to vortex shedding from the leading edge and impinging onto the trailing edge of the sunroof opening, which explains the mechanism of sunroof buffeting. A new deflector with a gap and a notched upper edge is designed to replace the original castle type deflector. The simulation results show that the newly designed deflector can reduce the buffeting level to 97.9 dB; that is, the sunroof buffeting is completely eliminated. Moreover, the phenomenon of sunroof buffeting reduction is explained by comparing and analyzing the flow field between the newly designed deflector and the original deflector.

Funder

Fundamental Research Funds for the Central Universities

Foundation and Advanced Research Project of Chongqing

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3