Acoustic performance prediction of a multilayered finite cylinder equipped with porous foam media

Author:

Darvish Gohari Hamed1,Zarastvand MohamdReza1,Talebitooti Roohollah1ORCID

Affiliation:

1. Noise and Vibration Control Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Iran

Abstract

This paper presents an analytical model to embed porous materials in a finite cylindrical shell in order to obtain the sound transmission loss coefficient. Although the circumferential modes are considered only for calculating the amount of the transmitted noise through an infinitely long cylinder, the present study employs the longitudinal modes in addition to circumferential ones to analyze the vibroacoustic performance of a simply supported cylinder subjected to the porous core based on the first order shear deformation theory. To achieve this goal, the structure is immersed in a fluid and excited by an acoustic wave. In addition, the acoustic pressures and the displacements are developed in the form of double Fourier series. Since these series consist of infinite modes, it is essential to terminate this process by considering adequate modes. Hence, the convergence checking algorithm is employed in the form of some three-dimensional configurations with respect to length, frequency and radius. Afterwards, some figures are plotted to confirm the accuracy of the present formulation. In these configurations, the obtained sound transmission loss from the present study is compared with that of the infinite one. It is shown that by increasing the length of the structure, the results are approached to sound transmission loss of the infinite shells. Moreover, a new approach is proposed to show the transverse displacement of a finite poroelastic cylinder at different frequencies. Based on the outcomes, it is found that by enhancing the length of the poroelastic cylinder, the amount of the transmitted sound into the structure is reduced at the high frequency domain. However, the sound insulation property of the structure is improved at the low frequency region when the radius of the shell is decreased.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3