Multiple-input and multiple-output force control for automobile component road simulation using model predictive control with proportional–integral–derivative

Author:

Na Hong-Cheol12ORCID,Yuan Hai-Bo1,Park Gyuhae1,Kim Young-Bae1ORCID

Affiliation:

1. Department of Mechanical Engineering, Chonnam National University, Republic of Korea

2. Research and Development Department, JKS Co. Ltd, Republic of Korea

Abstract

When developing an entire vehicle system, testing the structure of the vehicle or each component as a module or individually is necessary to determine the reliability and ensure the endurance of the entire vehicle. Various tests have been conducted to check the durability of the parts. However, the most important part is the verification of the fatigue limit of the load vibration from the road surface when the vehicle is being driven. Verification can be achieved by experimenting while driving on a real road with a prototype vehicle best suited to the actual conditions. However, issues such as problems in time, space, and environmental constraints, inconsistency in driving characteristics of the test driver, and continuous monitoring exist. For testing the load vibration of the road surface in automobile parts in the laboratory, hydraulic servo actuators are used because they provide vibrational loads in multiple directions by configuring them in multiple axes rather than a single axis. In this article, a multiple-input multiple-output model predictive control–proportional–integral–derivative hybrid controller is proposed as the method for optimal control of a multi-axis hydraulic servo actuator used in a random road signal reproduction experiment. Its performance is compared with the simple proportional–integral–derivative controller. A method for obtaining an efficient black box multiple-input multiple-output system model using LabVIEW in a laboratory in the field is also introduced, and the effectiveness of the model predictive control–proportional–integral–derivative hybrid controller is shown by reproducing the actual road load.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3