Affiliation:
1. Department of Civil Engineering, Indian Institute of Technology Bombay, India
Abstract
Flutter control of a bridge deck section using a combination of aerodynamic and mechanical measures, that is controllable winglets and rotating mass dampers, is considered. Deck and winglets are considered as flat plates for their aerodynamics. Self-excited wind forces are represented in the time domain using the Scanlan–Tomko model with Roger’s rational function approximation for flutter derivatives. Winglet rotation relative to the deck is the control input generated by the variable-gain output feedback controller that uses vertical and torsional displacements of the deck as measured outputs. Control using winglets enhances the critical speed to twice the uncontrolled flutter speed. Further attenuation of vertical response is obtained by using rotating mass dampers configured to provide only a resultant vertical force due to counter-rotating unbalanced masses. The rotors are driven at a constant angular speed, and start–stop criteria are applied. This generates additional vertical force on the deck that is mostly out of phase with its vertical velocity. It yields better control than the damper operated in a continuous rotation mode for a fixed number of cycles. A maximum reduction of 15% in root mean square vertical response is obtained when compared with control using winglets only.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献