Identification of an open crack in a beam with variable profile by two resonant frequencies

Author:

Rubio Lourdes1,Fernández-Sáez José2,Morassi Antonino3

Affiliation:

1. Department of Mechanical Engineering, University Carlos III of Madrid, Spain

2. Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, Spain

3. Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, Italy

Abstract

We consider the identification of a single open crack in a simply supported beam having nonuniform smooth profile and undergoing infinitesimal in-plane flexural vibration. The profile is assumed to be symmetric with respect to the mid-point of the beam axis. The crack is modeled by inserting a rotational linearly elastic spring at the damaged cross-section. We establish sufficient conditions for the unique identification of the crack by a suitable pair of natural frequency data, and we present a constructive algorithm for determining the damage parameters. The result is proved under a technical a priori assumption on the zeros of a suitable function determined in terms of the eigenfunctions of the problem. Extensions to beams under different sets of end conditions are also discussed. Theoretical results are confirmed by an extensive numerical investigation, both on simulated and experimental data.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3