Active vibration control of structural systems with a preview of a future seismic waveform generated by remote waveform observation data and an artificial intelligence–based waveform estimation system

Author:

Hiramoto Kazuhiko1ORCID,Matsuoka Taichi2

Affiliation:

1. Mechanical Engineering Program, Niigata University, Japan

2. Department of Mechanical Engineering and Informatics, Meiji University, Japan

Abstract

We propose a new active vibration control strategy of structural systems based on the information of future seismic waveform observed in remote observation sites. The observed waveform information of the remote site is transmitted by a waveform transmission network to the structure under control. The waveform transmission network is realized by interconnecting multiple controlled structures and observation sites. By using the remote waveform containing the future information of the disturbance at the location of the controlled structure, we propose an active control method that achieves fairly higher control performance over conventional methodologies. A preview control consisting of the state-feedback and feedforward control (preview action) is adopted as the control law. For the preview action, a future seismic waveform in some time interval is needed. Because the future seismic waveform is not available, the preview action contributing the performance improvement is generally impossible. To get over this difficulty, an artificial intelligence–based waveform estimation system to estimate the future seismic waveform is proposed. The core of the wave estimation system is a multi-layered artificial neural network. Through a small-scale simulation study with a recorded seismic event in Japan, we show that the proposed control method achieves much higher control performance over the optimized [Formula: see text] state-feedback control law.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence-Driven Active Tuned Mass Damper for Enhanced Seismic Resilience of Shear Frame Smart Structures;Journal of Vibration Engineering & Technologies;2024-07-01

2. Active seismic control using neural network;IOP Conference Series: Earth and Environmental Science;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3