On multi-fault detection of rolling bearing through probabilistic principal component analysis denoising and Higuchi fractal dimension transformation

Author:

Yang Xiaomin1ORCID,Xiang Yongbing2,Jiang Bingzhen3ORCID

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, China

2. School of Energy and Power Engineering, Wuhan University of Technology, China

3. College of Ocean Engineering, Guilin University of Electronic Technology, China

Abstract

Bearing multi-fault detection from stochastic vibration signal is still a thorny task to dispose of because of the complex interplay between different fault components under severe noise interference. In such case, conventional techniques such as filter processing and envelope demodulation may cause undesired results. To overcome the limitation, this article explores a filtering-free technique combined probabilistic principal component analysis denoising with the Higuchi fractal dimension transformation to diagnose the bearing multi-faults. Fractal theory is used to optimize the model parameters and stabilize the random vibrational signal for fast Fourier transform spectrum analysis. Noise interference in the Higuchi transformation is capped using a probabilistic principal component analysis model whose parameters are optimized through embedding dimension Cao algorithm and correlation dimension Grassberger and Procaccia algorithm. The fault diagnostic scheme mainly falls into three steps. First, the original vibration signal is truncated into a series of sub-signal segments by moving window whose length is determined as twice the value of maximum time delay that is provided by examining the steady Higuchi fractal dimension value of a raw signal in a process of plotting the fractal dimension over a range of time delay. Then, the Higuchi approach is used to estimate the average fractal dimension for each segment to create a quasi-stationary Higuchi fractal dimension sequence on which, finally, the fault features are straightforwardly extracted by the fast Fourier transform algorithm. The effectiveness of the proposed method is validated using simulated and experimental compound bearing fault vibration signals. Some fault components may be clouded if applied Higuchi fractal dimension alone because of the noise interference, but using the probabilistic principal component analysis–Higuchi fractal dimension method leads to clear diagnostic results. It indicates that the proposed approach can be incorporated into bearing multi-fault extraction from raw vibration signals.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3