A novel memristive chaotic jerk circuit and its microcontroller-based sliding mode control

Author:

Yesil Abdullah1,Gokyildirim Abdullah1ORCID,Babacan Yunus2,Calgan Haris3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Bandırma Onyedi Eylül University, Bandırma, Turkey

2. Department of Electrical and Electronics Engineering, Erzincan Binali Yildirim University, Erzincan, Turkey

3. Department of Electrical and Electronics Engineering, Balıkesir University, Balıkesir, Turkey

Abstract

Due to the experimental realization of memristor circuit elements, research on memristors and memristor-based circuits has surged. Because of their nonvolatile and nonlinear behavior, memristors can be easily applied to chaotic circuits. This study introduces a novel memristive 3D chaotic jerk system, comprising only seven terms, along with its electronic model and microcontroller-based control. The flux-controlled memristor-based jerk system exhibits complex dynamics, which were analyzed through various properties such as phase portraits, the Jacobian matrix, equilibria, eigenvalues, Lyapunov spectra, bifurcation diagrams, and transient chaos behavior. Three controllers, namely, nonlinear feedback, classical sliding mode, and integral sliding mode were designed to control the chaotic jerk oscillator. Lyapunov functions were used to synthesize the nonlinear feedback controller and ensure system stability with the sliding mode technique. Numerical tests under various performance criteria and disturbance conditions showed that the sliding mode controller outperforms the nonlinear feedback controller due to its single-state control structure. The chaotic jerk oscillator hardware circuit was designed and implemented, operating easily with initial conditions set to zero and low DC supply voltages, with all output voltages within ±6V. Both theoretical and simulation results demonstrate the system’s complexity and applicability, with experimental results aligning well with simulations. Consequently, effective microcontroller-based control was achieved using a single-state controller.

Funder

Scientific Research Projects Coordination Unit of Bandirma Onyedi Eylul University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3