Free vibration analysis of coupled sloshing-flexible membrane system in a liquid container

Author:

Kolaei Amir12ORCID,Rakheja Subhash1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Concordia University, Canada

2. Deptartment of Mechanical and Aerospace Engineering, Shiraz University of Technology, Iran

Abstract

A finite element model is developed to study free vibration of a liquid in a tank of arbitrary geometry with a flexible membrane constraining the liquid free-surface. A variational formulation is initially developed using the Galerkin method, assuming inviscid, incompressible and irrotational flow. The resulting generalized eigenvalue problem is then reduced by considering only the elements on the liquid free-surface, which significantly reduces the computational time. The proposed physical model is subsequently implemented into the FEniCS framework to obtain coupled hydroelastic liquid-membrane frequencies and modes. The coupled frequencies are compared with those reported for rectangular and upright cylindrical tanks using analytical methods in order to illustrate the validity of the finite element model. The results are subsequently presented for a horizontal cylindrical tank with an elastic free-surface membrane for different fill ratios and tank lengths. The effects of the membrane tension on the free vibration of the liquid in the tank are further investigated by comparing the coupled liquid-membrane frequencies with slosh frequencies of the liquid alone. It is shown that sloshing frequencies can be effectively shifted to higher values to prevent resonance in partially filled moving containers.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3