Modeling method of element Rayleigh damping for the seismic analysis of a 3D FEM model with multiple damping properties

Author:

Onitsuka Shohei1,Ushio Yuichi2,Ojima Naoki3,Iijima Tadashi1

Affiliation:

1. Nuclear Plant Engineering Department, Hitachi-GE Nuclear Energy, Ltd., Japan

2. Reliability Science Research Department, Hitachi, Ltd., Japan

3. Plant Engineering Department, Hitachi Industry & Control Solutions, Ltd., Japan

Abstract

Damping modeling is important for the accurate evaluation of the seismic response of structures. Our group previously reported a damping modeling method using element Rayleigh damping and evaluated the effectiveness using a simple lumped-mass model with multiple damping properties; however, the effectiveness of the method was not evaluated for three-dimensional (3D) finite element method (FEM) models with multiple damping properties. Moreover, further studies showed that the method needed to be improved to be applied to 3D FEM models. Therefore, the method has been improved to enable application to the seismic analysis of 3D FEM models, and the effectiveness of the method has been evaluated. The proposed method uses a weighted least-squares method to automatically determine the coefficients of element Rayleigh damping. The weighted least-squares method minimizes the differences between the modal damping ratios to be modeled and those given by element Rayleigh damping. Although all modal damping ratios in a simple lumped-mass model were used for damping modeling in our previous study, obtaining them for 3D FEM models is impractical because these models have more natural modes than simple lumped-mass models. Therefore, we used modal damping ratios below a cut-off frequency. The effectiveness of the proposed method was evaluated by comparing it with conventional methods in terms of the modeling errors related to the modal damping ratios and the maximum absolute acceleration. The proposed method tended to have lower errors than the conventional methods and is concluded to be more effective for the seismic analysis of 3D FEM models with multiple damping properties. The proposed method can automatically determine the coefficients of element Rayleigh damping and can more accurately model the damping properties of analysis models, indicating that the proposed method is a powerful tool for the seismic analysis of 3D FEM models with multiple damping properties.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3