Barrier Lyapunov function-based adaptive prescribed performance control of the PMSM used in robots with full-state and input constraints

Author:

Song Yankui12,Xia Yu12,Wang Jiaxu12,Li Junyang12,Wang Cheng12,Han Yanfeng12,Xiao Ke12ORCID

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China

2. College of Mechanical Engineering, Chongqing University, Chongqing, China

Abstract

The permanent magnet synchronous motor is extensively used in robots due to its superior performances. However, robots mostly operate in unstructured and dynamically changing environments. Therefore, it is urgent and challenging to achieve high-performance control with high security and reliability. This paper investigates an accelerated adaptive fuzzy neural prescribed performance controller for the PMSM to solve chaotic oscillations, prescribed output performance constraint, full-state constraints, input constraints, uncertain time delays, and unknown external disturbances. First, for ensuring the permanent magnet synchronous motor with higher security, faster response speed, and lower tracking error simultaneously, a novel unified prescribed performance log-type barrier Lyapunov function is proposed to handle both prescribed output performance constraint and full-state constraints. Subsequently, a continuous differentiable constraint function-based model is introduced for solving input constraints nonlinearity. The Lyapunov–Krasovskii functions are utilized to compensate the uncertain time delays. Besides, a type-2 sequential fuzzy neural network is exploited to approximate unknown nonlinearities and unknown gain. For the “explosion of complexity” associated with backstepping, a tracking differentiator is integrated into this controller. Furthermore, a speed function is introduced in the backstepping technique for accelerated convergence. On the basis of above works, the accelerated adaptive backstepping controller is achieved. And the presented controller can ensure that all the closed-loop signals are ultimate boundedness, and all state variables are restricted in the prespecified regions and the permanent magnet synchronous motor successfully escapes from chaotic oscillations. Finally, the simulation results verify the effectiveness of the proposed controller.

Funder

National Key Research and Development Program of China

Key Research and Development Program of Guangdong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3