Modal Controllability and Observability of Bladed Disks and their Dependency on the Angular Velocity

Author:

Christensen René H.1,Santos Ilmar F.1

Affiliation:

1. Department of Mechanical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark

Abstract

Rotating bladed disks are characterized by time-variant mathematical models presenting vibration coupling among rotor lateral motion and blade flexible motion. Moreover, they present parametric vibration modes and the blade natural frequencies may change depending on the angular velocity due to centrifugal stiffening. Consequently, the degree of controllability and observability of bladed disks also becomes time-varying, dependent on angular velocity, and a difficult task to analyze. In this paper we present a methodology for analyzing the modal controllability and observability of a bladed disk, based on time-variant modal analysis. The method takes into account time-variant parametric vibration mode shapes, and quantitative measures of modal controllability and observability are calculated. Numerical results show that, in order to control blade and shaft vibrations of a tuned bladed disk, by means of active control, blade-based as well as shaft-based sensing and actuation are required to monitor and control all vibration levels. If rotor blades are properly mistuned, the results show that disk as well as blade vibrations are monitorable and controllable by using only shaft-based sensing and actuation. The analysis shows why the mistuned disk becomes theoretically controllable and observable, via the presence of parametric mode shape components. Finally, the results show that the levels of controllability and observability depend significantly on the angular velocity, no matter the number of applied sensors and actuators used or their positioning.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3