Structural damage detection in plates using a deep neural network–couple sparse coding classification ensemble method

Author:

Bokaeian Vahid1ORCID,Khoshnoudian Faramarz1ORCID,Fallahian Milad1ORCID

Affiliation:

1. Department of Civil Engineering, Amirkabir University of Technology, Iran

Abstract

The present study aims at identifying damages in plate structures by applying a pattern recognition–based damage detection technique using the frequency response function. The large number of degrees of freedom is one of the crucial obstacles in the way of accurately identifying damages in plate structures. On the other hand, frequency response functions include many details that dramatically lower the computing speed and enlarge the memory needed for storing data, hampering the application of this method. Furthermore, this study performs principal component analysis as an authoritative feature extraction method with the purpose of reducing the dimensions of the measured frequency response function data and generating distinct feature patterns. Also, because there has been no individual optimal classifier applicable to all problems, an ensemble comprising two powerful classifiers containing couple sparse coding classification and deep neural networks is used to predict the structure damage. This study evaluates the accuracy of damage detection by the proposed method in square-shaped structural plates with the lengths of 1 m and 2 m under different damage scenarios, namely, single and multiple element.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3