Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose

Author:

Agudelo-Chaparro Jacqueline1,Ciro-Velásquez Héctor J1,Sepúlveda-Valencia José U1,Pérez-Monterroza Ezequiel José1ORCID

Affiliation:

1. Department of Agricultural and Food Engineering, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia

Abstract

This study aimed to microencapsulate Lactobacillus rhamnosus ( L. rhamnosus) ATCC 7469 with whey protein concentrate (WPC), maltodextrin and trehalose by spray drying and to assess the impact of microencapsulation on cell viability and the properties of the dried powders. Spray-drying conditions, including inlet air temperature, air flow rate and feed pump, were fixed as independent variables, while probiotic survival, moisture content, water activity and effective yield were established as dependent variables. The survival of encapsulated L. rhamnosus by spray drying was optimized with response surface methodology, and the stability of the powder was assessed. The optimum spray-drying conditions were an inlet air temperature, air flow rate and feed pump rate of 169 °C, 33 m3·h−1 and 16 mL·min−1, respectively, survival of 70%, air aspiration of 84% and outlet air temperature of 52 °C, achieving an overall desirability of 0.96. The physicochemical and structural characteristics of the produced powder were acceptable for application with regard to residual water content, hygroscopicity, water activity, and particle size. The results indicated that a protein-trehalose-maltodextrin mixture is a good wall material to encapsulate L. rhamnosus, showing important thermal protection during the drying process and increasing survival. However, a decrease in this capacity is observed at an air outlet temperature of approximately 101 °C. The possible effects of the wall materials and the drying conditions on survival are also discussed.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3