Progressive freeze concentration of skimmed milk in an agitated vessel: Effect of the coolant temperature and stirring rate on process performance

Author:

Muñoz Isabella de Bona1,Rubio Ariadna2,Blanco Mónica3,Raventós Mercè2,Hernández Eduard2,Prudêncio Elane Schwinden1

Affiliation:

1. Food Science and Technology Department, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

2. Agri-Food Engineering and Biotechnology Department, Universitat Politècnica de Catalunya (UPC BarcelonaTech), Esteve Terradas, Barcelona, Spain

3. Department of Mathematics, Universitat Politècnica de Catalunya (UPC BarcelonaTech), Esteve Terradas, Barcelona, Spain

Abstract

The aim of this study was to investigate the freeze-concentration of skimmed milk by a progressive freeze concentration process. The progressive freeze concentration procedure was performed at three different temperatures (−5, −10, and −15 ℃) and stirring rates (0, 500, and 1000 r/min). The solids concentration was determined and used for calculations of the efficiency of the process, concentrated yield, and experimental results validation. A general linear model was applied to determine the influence of the two factors studied, namely coolant temperature and agitation speed. In all tests, it was possible to concentrated skimmed milk with total solids content higher (P < 0.05) than ultra-high temperature skimmed milk. The highest concentration (P < 0.05) was achieved at low coolant temperature (−15 ℃) and high agitation speed (1000 r/min). The coolant temperature and the stirring rate both had a significant effect (P < 0.05) on the results of efficiency of the process and concentrated yield. Nevertheless, the parameter that showed the most significant effect in our study was the stirring rate. The tests presented a good fit since the root mean square values were below 25%. The freezing point temperatures of the concentrated milk fractions were lower than that of skimmed milk. Finally, the best-operating conditions in our study were achieved using a high coolant temperature (−5 ℃) and high mechanical stirring (1000 r/min), which was also the variable with the lowest (P < 0.05) retention of solids in the ice fraction. In our study, the progressive freeze concentration technique showed promise as an alternative for the dairy industry since it makes the development of new dairy products possible.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3