Affiliation:
1. Departamento de Ingeniería, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Palmira, Valle del Cauca, Colombia
2. Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
Abstract
In recent years, people have become interested in consuming low-fat foods as this reduces the risk of obesity and cardiovascular disease. For this reason, this study optimized the incorporation of passion fruit epicarp (PFE) as a partial fat substitute in dairy ice cream. For this purpose, a central composite rotational design 22 was performed and 5 response variables were optimized, of which 4 variables were maximized (percentage overrun, hardness, adhesiveness, and color coordinates L*, a*, b*), while the melting rate was minimized as a function of two factors (% PFE and % fat). The stability of three types of ice cream was then evaluated: experimental ice cream (3% milk fat and 0.97% PFE), commercial ice cream (4% milk fat and 2% vegetable fat) and control ice cream (3% milk fat without PFE added), according to their physicochemical and sensory properties during 57 days of storage (−22 °C, 85% relative humidity). The results showed that it was possible to reduce the milk fat by up to 25% by adding PFE (0.97%), which significantly reduced the melting rate and resulted in higher hardness (N), adhesiveness and increased yellowness compared to the commercial samples. The optical microscopy analysis also showed that PFE keeps the air bubbles immobile due to the increased viscosity in the serum phase during the 57-day storage.