Rheological and physicochemical properties of heat-induced ovalbumin gels in presence of sodium carboxymethyl cellulose

Author:

Xu Wei1ORCID,Wu Guanchen1,Jia Yongxian1,Yin Yongpeng2,Ning Yuli1,Li Penglin1,Li Cuiping1,Luo Denglin2,Shah Bakht Ramin3

Affiliation:

1. College of Life Science, Xinyang Normal University, Xinyang, China

2. College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China

3. Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic

Abstract

In this study, the effect of sodium carboxymethylcellulose (CMC-Na) on the rheological and physicochemical properties of heat-induced ovalbumin (OVA) gels was evaluated. The OVA/CMC-Na composite gels were prepared by heat-induced (85 °C, pH 7.0) a mixture of CMC-Na (0, 0.2, 0.4, 0.8 and 1%) and OVA. The results revealed that the addition of CMC-Na dramatically reduced the springiness and hardness of the composite gels, while slightly enhancing the intermolecular hydrogen bonding interactions, which facilitated the improvement of the softness of the gels. It can be observed by SEM that the added CMC-Na was stacked on the surface of the OVA, resulting in visible “linear bumps”. All gel samples exhibited shear-thinning behavior. The apparent viscosity of the composite gels increased with the addition of CMC-Na, and the OVA gel with 1% CMC-Na showed the highest apparent viscosity and the lowest storage modulus (G’). Additionally, low field nuclear magnetic resonance (LF-NMR) measurements indicated that the increasing CMC-Na boosted the water mobility of the composite gel. This study offers a novel approach to the development of ovalbumin-based soft gel foods, especially for certain populations with swallowing difficulties.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3