Eradication of multiple-species biofilms from food industrial and domestic surfaces using essential oils

Author:

Vidács Anita1ORCID,Kerekes Erika Beáta2,Takó Miklós2,Vágvölgyi Csaba2,Krisch Judit1

Affiliation:

1. Institute of Food Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary

2. Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary

Abstract

Microbial biofilm formation represents a serious problem for both food industry and households. Natural biofilms are formed mostly by multiple species, and show resistance against most of the usual sanitizers. In this study, the effects of cinnamon ( Cinnamomum zeylanicum), marjoram ( Origanum majorana) and thyme ( Thymus vulgaris) essential oils (EOs) and their main components (cinnamaldehyde, terpinene-4-ol, and thymol) were investigated on four-species biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida and Staphylococcus aureus. Minimum bactericide concentration (MBC) and killing time were determined by means of the microdilution method. MBC of the investigated EOs and components was between 0.5 mg/mL (cinnamaldehyde) to 25 mg/mL (terpinene-4-ol). Killing times for the four-species suspension were 5 or 10 min, time spans usable in the food industry. For eradication of the mixed-population biofilm from stainless steel (SS), polypropylene (PP), tile and wood surfaces, EO- or EO component-based disinfectant solutions were developed, and their effects were compared to a peracetic acid-based industrial sanitizer (HC-DPE). Total eradication of biofilms (99.9%) was achieved, with solutions containing cinnamon and thyme EO and EO components, from SS and PP, but not from tile or wood surfaces. Apparently, cinnamon EO, terpinene-4-ol and thymol have better disinfectant activity than HC-DPE.

Funder

NKFI FK

Széchenyi 2020 Programme

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3