Postmortem Diagnosis of the Proteus Syndrome by Next Generation Sequencing of Affected Brain Tissue

Author:

Baker Tiffany G.ORCID,Glen William B.,Wilson Robert C.,Batalis Nicholas I.,Wolff Daynna J.,Welsh Cynthia T.

Abstract

We report a case of a somatic overgrowth syndrome diagnosed at forensic autopsy with the aid of next generation sequencing as Proteus syndrome. Somatic overgrowth syndromes result from spontaneous somatic mutations that arise early in development and display a mosaic pattern of expression in patient tissues. Due to the temporal and anatomic heterogeneity of these syndromes, phenotypes vary widely, resulting in clinical overlap. Furthermore, the variable ratio of mutated to nonmutated cells in patient tissue can result in low-level mutations that could be missed using Sanger sequencing. Due to these factors, recent literature points to next generation sequencing (NGS) as an adjunct to diagnosis of these rare entities. A male in his fourth decade of life presented to our forensic autopsy service with physical features suggestive of a somatic overgrowth syndrome. Due to the paucity of clinical information accompanying the individual, a definitive diagnosis based on physical characteristics, alone, was not possible. Next generation sequencing of affected formalin-fixed and paraffin-embedded brain tissue confirmed the presence of the variant in AKT1 (c.49G>A, p.Glu17Lys, in 14.13% of reads) found in Proteus syndrome. To our knowledge, this is the first report of the mosaic variant of AKT1 detected in brain tissue and the first reported case of a postmortem diagnosis of Proteus syndrome with the aid of NGS. We conclude that NGS can be used as an adjunctive method to support a specific diagnosis among the somatic overgrowth syndromes postmortem in the absence of sufficient clinical history.

Funder

Medical Univeristy of South Carolina, Department of Pathology and Laboratory Medicine

Publisher

SAGE Publications

Subject

Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3