Affiliation:
1. School of Information Engineering, Nanchang Hangkong University, China
2. School of Reliability and System Engineering, Beihang University, China
Abstract
For stealth unmanned aerial vehicles (UAVs), path security and search efficiency of penetration paths are the two most important factors in performing missions. This article investigates an optimal penetration path planning method that simultaneously considers the principles of kinematics, the dynamic radar cross-section of stealth UAVs, and the network radar system. By introducing the radar threat estimation function and a 3D bidirectional sector multilayer variable step search strategy into the conventional A-Star algorithm, a modified A-Star algorithm was proposed which aims to satisfy waypoint accuracy and the algorithm searching efficiency. Next, using the proposed penetration path planning method, new waypoints were selected simultaneously which satisfy the attitude angle constraints and rank-K fusion criterion of the radar system. Furthermore, for comparative analysis of different algorithms, the conventional A-Star algorithm, bidirectional multilayer A-Star algorithm, and modified A-Star algorithm were utilized to settle the penetration path problem that UAVs experience under various threat scenarios. Finally, the simulation results indicate that the paths obtained by employing the modified algorithm have optimal path costs and higher safety in a 3D complex network radar environment, which show the effectiveness of the proposed path planning scheme.
Funder
Innovation Special Fund of Nanchang Hangkong University for Graduate Student
Aeronautical Science Foundation of China
National Natural Science Foundation of China
San Xiao projects of Nanchang Hangkong University
Major Science and Technology Innovation Project of Shandong Province
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献