Laminar buffet and flow control

Author:

Brion V1ORCID,Dandois J1,Mayer R2,Reijasse P1,Lutz T2,Jacquin L1

Affiliation:

1. ONERA, The French Aerospace Lab, Meudon, France

2. USTUTT, University of Stuttgart, Germany

Abstract

An experimental investigation of the transonic flow past the laminar OALT25 airfoil has been conducted to analyze the impact of laminar flow upon the shock wave dynamics and the existence of a laminar buffet like phenomenon. Tests have been carried out at freestream Mach numbers varying in the range of 0.7–0.8, angle of attack from 0.5° to 4°, and with two tripping configurations at the upper surface of the wing. The (airfoil) chord based Reynolds number is about three million. Results obtained from pressure taps and sensors measurements, as well as Schlieren visualizations of the flow reveal the presence of a laminar buffet phenomenon in sharp contrast with the turbulent phenomenon, as it features a freestream- and chord-based normalized frequency of about unity while turbulent buffet occurs for a frequency close to 0.07 (Jacquin et al., AIAA J 2009; 47). A low-frequency mode, at a frequency of about 0.05 is also present in the laminar situation, notably lower than the high-frequency component. The latter exhibits strong oscillations of the shock foot and vertical wavelike deformations of the shock wave and the former moves the shock back and forth over a small portion of chord, quite similar to the turbulent phenomenon. The mean flow past the laminar wing is characterized by a laminar separation bubble under the shock foot, which likely contributes much to the novel dynamics revealed by the present experiments. Two control strategies of the unsteady shock wave are implemented, one consisting of three-dimensional bumps and one consisting of steady jets blowing transversely to the freestream. It is found that bumps provide a significant reduction of the buffet intensity in the laminar situation. The jets are able to completely remove the flow unsteadiness in both laminar and turbulent conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3