A quadratic homotopy method for fuel-optimal low-thrust trajectory design

Author:

Pan Binfeng1,Pan Xun1,Ma Yangyang1

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, China

Abstract

Solving fuel-optimal low-thrust trajectory problems is a long-standing challenging topic, mainly due to the existence of discontinuous bang–bang controls and small convergence domain. Homotopy methods, the principle of which is to embed a given problem into a family of problems parameterized by a homotopic parameter, have been widely applied to address this difficulty. Linear homotopy methods, the homotopy functions of which are linear functions of the homotopic parameter, serve as useful tools to provide continuous optimal controls during the homotopic procedure with an energy-optimal low-thrust trajectory optimization problem as the starting point. However, solving energy-optimal problem is still not an easy task, particularly for the low-thrust orbital transfers with many revolutions or asteroids flyby, which is typically solved by other advanced numerical optimization algorithms or other homotopy methods. In this paper, a novel quadratic homotopy method, the homotopy function of which is a quadratic function of the homotopic parameter, is presented to circumvent this possible difficulty of solving the initial problem in the existing linear homotopy methods. A fixed-time full-thrust problem is constructed as the starting point of this proposed quadratic homotopy, the analytical solution of which can be easily obtained under a modified linear gravity approximation formulation. The criterion of energy-optimal problem is still involved in the homotopic procedure to provide continuous optimal controls until the original fuel-optimal problem is solved. Numerical demonstrations in an Earth to Venus rendezvous problem, a geostationary transfer orbit (GTO) to geosynchronous orbit (GEO) orbital transfer problem with many revolutions, and an Earth to Mars rendezvous problem with an asteroid flyby are presented to illustrate the applications of this proposed homotopy method.

Funder

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3