Multitarget geolocation via an agricultural octorotor based on orthographic projection and data association

Author:

Garcia Christian A1,Xu Yunjun1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Abstract

In recent years, unmanned aerial vehicles with onboard spectral sensors have been used in detecting diseases in the agricultural fields. Geolocation, i.e. calculating the global coordinate of identified diseased regions based on images taken, is an important step in automating such a scouting operation. In this paper, the problem of geolocating multiple diseased regions in an image is studied. Based on the assumptions of stationary, two-dimensional shallow target plants and hover flight, an orthographic projection-based measurement model is developed. A probabilistic data association method is used to analyze the measurements from different target sources and a Kalman filter is designed to estimate the suspected diseased leaves’ position. To the best of the authors’ knowledge, it is the first time a data association technique is used in for locating multiple-diseased plants in agriculture applications. Additionally, the designed Kalman filter is based on conditions pertinent to small crops and is less computationally intensive than the typically used extended Kalman filter. Both simulation and ad hoc experiments are used to validate the proposed multitarget geolocation algorithm.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3