Optimization of novel flat serial single-phase radiators for spacecraft thermal control

Author:

Chiranjeevi Phanidra B.1,Ashok Venkateswaran2,Srinivasan K.3,Sundararajan T.3

Affiliation:

1. Deputy Project Director, Human Space Flight Centre, Indian Space Research Organization, Bengaluru, India

2. Deputy Director, Vikram Sarabhai Space Centre, Indian Space Research Organization, Trivandrum, India

3. Professor, Mechanical Engineering Department, Indian Institute of Technology Madras, Chennai, India

Abstract

Space thermal radiators play a significant role in the thermal management of spacecraft. With the increase in heat dissipation requirement, the heat pipe radiators are being replaced by mechanically pumped fluid loop radiators. In recent years, authors proved that optimum serpentine serial radiators are advantageous over conventional optimum parallel radiators in terms of the mass and pressure drop. The spiral radiators, inspired by spiral plate heat exchangers, are proposed and analyzed as a replacement for the serpentine serial radiators. Performance analysis of radiators is carried out using conjugate heat transfer analysis. Conjugate heat transfer results are validated with the experimental results obtained from the literature. The performance analysis indicated that the circular spiral radiator performs better than the other two types due to their lower mass and pressure drop. Optimization of radiators is carried out using Taguchi Signal to Noise ratio analysis. Analysis of Variance is conducted to determine the percentage contribution of each variable to the performance of the radiator. When lower pressure drop requirement is prominent, the contribution of the diameter of the tube is 79.3%, whereas the contribution of fin thickness and pitch of the tubes are only 6.1% and 8.2%, respectively. The contribution of the fin thickness is 57.39%, the diameter of the tube is 37.71%, and the pitch of the tubes is 1.89% when the lower mass of the radiator is the prime requirement. The high-performance spiral radiators may find their application in the thermal management of human space flights and high-power GEO satellites.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3