A semi-empirical model for streamwise vortex intensification

Author:

McLelland Grant1ORCID,MacManus David1,Sheaf Chris2

Affiliation:

1. Centre for Propulsion, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford, UK

2. Systems Design, Rolls-Royce plc, Derby, UK

Abstract

Vortex intensification plays an important role in a wide range of flows of engineering interest. One scenario of interest is when a streamwise vortex passes through the contracting streamtube of an aircraft intake. There is, however, limited experimental data of flows of this type to reveal the dominant flow physics and to guide the development of vortex models. To this end, the evolution of wing-tip vortices inside a range of streamtube contractions has been measured using stereoscopic particle image velocimetry. A semi-empirical model has been applied to provide new insight on the role of vorticity diffusion during the intensification process. The analysis demonstrates that for mild flow contractions, vorticity diffusion has a negligible influence due to the low rates of diffusion in the vortex flow prior to intensification and the short convective times associated with the streamtube contraction. As the contraction levels increase, there is a substantial increase in the rates of diffusion which is driven by the greater levels of vorticity in the vortex core. A new semi-empirical relationship, as a function of the local streamtube contraction levels and vortex Reynolds number, has been developed. The model comprises a simple correction to vortex filament theory and provides a significant improvement in the estimation of vortex characteristics in contracting flows. For the range of contractions investigated, errors in the estimation of vortex core radius, peak tangential velocity and vorticity are reduced by an order of magnitude. The model can be applied to estimate the change in vortex characteristics for a range of flows with intense axial strain, such as contracting intake streamtubes and swirling flows in turbomachinery.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. S-duct flow distortion with non-uniform inlet conditions;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3