Attitude path design and adaptive robust tracking control of a remote sensing satellite in various imaging modes

Author:

Zarourati Mohammad1ORCID,Mirshams Mehran1,Tayefi Morteza1

Affiliation:

1. Faculty of Aerospace Engineering, K N Toosi University of Technology, Tehran, Iran

Abstract

This paper addresses the attitude path design of a remote sensing satellite in various imaging modes. The novel path design algorithm is based on local polynomial regression, which produces a smooth attitude path by receiving the size and timing of maneuvers in each axis according to the desired imaging mode. This algorithm is described for stereo and snapshot modes in an imaging operation. The adaptive robust tracking control (ARTC) law is designed using quaternion algebra to perform the required maneuvers in an attitude path. The ARTC structure includes a sliding mode strategy, a projection-based adaptive model compensation, and a linear feedback term. Suitable conditions for imaging in each mode and the time of taking the image are determined by defining and evaluating the attitude control indices. These indices are defined by the half-cone error along the payload line of sight and relative performance error as a jitter with a 3-sigma confidence level. Despite the challenges in the path design, such as smoothness, system agility, and finite time realization of indices, in a conventional stereo imaging mode, taking an image in the nadir-pointing attitude is neglected. As a result, our work provides suitable conditions for taking the image in this attitude with an interval of 1.2 s. Finally, numerical simulations and verification are performed using multidisciplinary simulation, indicating the effectiveness of the proposed algorithm and model-based ARTC law.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3