Extended validation of a ground-based three-axis spacecraft simulator model

Author:

Ousaloo H Sh1,Sharifi Gh1ORCID,Akbarinia B2

Affiliation:

1. Department of the Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran

2. Department of the Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

The ground-based spacecraft dynamics simulator plays an important role in the implementation and validation of attitude control scenarios before a mission. The development of a comprehensive mathematical model of the platform is one of the indispensable and challenging steps during the control design process. A precise mathematical model should include mass properties, disturbances forces, mathematical models of actuators and uncertainties. This paper presents an approach for synthesizing a set of trajectories scenarios to estimate the platform inertia tensor, center of mass and aerodynamic drag coefficients. Reaction wheel drag torque is also estimated for having better performance. In order to verify the estimation techniques, a dynamics model of the satellite simulator using MATLAB software was developed, and the problem reduces to a parameter estimation problem to match the experimental results obtained from the simulator using a classical Lenevnberg-Marquardt optimization method. The process of parameter identification and mathematical model development has implemented on a three-axis spherical satellite simulator using air bearing, and several experiments are performed to validate the results. For validation of the simulator model, the model and experimental results must be carefully matched. The experimental results demonstrate that step-by-step implementation of this scenario leads to a detailed model of the platform which can be employed to design and develop control algorithms.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3