Investigation of adaptive slot control method for starting characteristics of hypersonic inlets

Author:

Zhu Chengxiang1ORCID,Yang Rijiong1,Chen Rongqian1,Qiu Ruofan1,You Yancheng1

Affiliation:

1. School of Aerospace Engineering, Xiamen University, Xiamen, Fujian, China

Abstract

Starting characteristics restrict the operation limits of a hypersonic inlet. Enhancement of the starting ability thus serves as one of the most serious issues in propulsion system. In the present work, we propose a simple adaptive slot control method, which expands the working range of hypersonic inlets to a lower Mach number and shows very weak losses. Our simulation results applying the five parallel slot geometrical design show a substantial reduction of the starting Mach number. The air flow inside the parallel slot channels is self-driven by the pressure gradient located near the separation shock under unstart mode, whereas it is strongly suppressed when the inlet is restarted. Surprisingly, all the inlet configurations are almost restarted at the same Mach 3.0, regardless of the individual width of the slot and the number of slot. This confirms the self-adapted nature of the pressure gradient inside the channel which shows prospect for the potential engineering applications of the simple slot control method. However, the location of the slots shows a big influence on the control efficiency, indicating that these slots need to be arranged carefully on the compression surface based on the location of the separation bubble.

Funder

Fundamental Research Funds for the Central Universities

Soft Science Foundation of the Fujian Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of the shock-dominated flow in a hypersonic inlet/isolator;Progress in Aerospace Sciences;2023-11

2. The Influence of Bleeding Direction on Starting Performance of Three-Dimensional Inward Turning Inlet;International Journal of Aerospace Engineering;2023-08-29

3. 高超声速进气道自起动特性磁流体动力学控制机理;SCIENTIA SINICA Physica, Mechanica & Astronomica;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3