A comparative study on class-imbalanced gas turbine fault diagnosis

Author:

Bai Mingliang1,Liu Jinfu2ORCID,Long Zhenhua2,Luo Jing2,Yu Daren12

Affiliation:

1. Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China

2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China

Abstract

Gas turbines are widely used in various fields, and the failure of gas turbines can cause catastrophic consequences. Health condition monitoring and fault diagnosis of gas turbines can detect faults timely, avoid serious faults, and significantly reduce maintenance costs. Thus, fault diagnosis of gas turbines has great significance. Current researches on gas turbine fault diagnosis mainly focus on the case of abundant fault samples. However, fault data are very rare and the number of normal samples is much larger than the number of fault samples in the industrial scene. This class-imbalance problem widely exists but is hardly focused in the field of gas turbine fault diagnosis. Aiming to solve this problem, this paper introduces the concept of class-imbalanced learning from the machine learning field, summarizes three kinds of class-imbalance addressment methods including oversampling, undersampling, and sample weighting, and proposes a new combination method of focal loss and random oversampling for addressing class-imbalance in deep neural networks, and performs a systematic comparative study on class-imbalanced gas turbine fault diagnosis. Experimental results show that class-imbalance can seriously reduce the fault diagnosis accuracy. Through these class-imbalance addressment methods, diagnosis accuracy is greatly improved. Comparative experiments also show that the proposed combination method can obtain the best diagnosis accuracy among all the compared methods in class-imbalanced situation. Through this comparative study, a detailed guideline for improving diagnosis accuracy under class-imbalanced circumstance is provided.

Funder

National Science and Technology

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3