Finite-horizon servo SDRE for super-maneuverable aircraft and magnetically-suspended CMGs

Author:

Geranmehr Behdad1,Vafaee Kamran1,Rafee Nekoo Saeed1

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

This work proposes a finite-horizon servo state-dependent Riccati equation (SDRE) to control two classes of aerospace systems. The SDRE is widely used for nonlinear and optimal control of different systems in theory and practice. In this work, an augmented integrator was added to the SDRE (servo SDRE) to increase performance of the controller, especially to decrease steady-state error. The finite-horizon structure developed for servo SDRE features the advantages of both methods. Attitude control of super-maneuverable aircraft was modeled and simulated. It was then compared with a conventional SDRE controller to show the advantages of the proposed combination. A magnetically suspended double-gimbal control moment gyroscope was tested using the finite-horizon servo SDRE because the control moment gyroscope is the primary attitude control actuator for spacecraft. The results showed that the servo structure improved the performance and decreased the error of the SDRE using a simple systematic approach. The finite-horizon option completes the task sooner than common controllers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3