Experimental and numerical analysis of fluid-solid-thermal coupling on electric fuel pump

Author:

Wei Renfeng1ORCID,Ye Zhifeng123

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Jiang Su Province Key Laboratory of Aerospace Power Systems, Nanjing, China

3. Key Laboratory of Aero-engine Thermal Environment and structure, Ministry of Industry and Information Technology, Nanjing, China

Abstract

This paper designs an axial partition fuel cooling shell to solve the problem of temperature rise in the motor of the electric fuel pump (EFP). And describes a simplified method in conjunction with the computational fluid dynamics(CFD) to analyze heat generations and fuel cooling effects in integrated EFPs. Furthermore, CFD is used to numerically simulate the coupling effects among the fluid-solid-thermal based on multiple physical field. With varying different working conditions of the pump, cooling characteristics of the fuel cooling shell are obtained through CFD results. Finally, an experimental system for the EFP is established to verify reliability of the simplified method and the effectiveness of the fuel cooling scheme. Results show that fuel cooling shell plays an essential role in heat dissipating, with a maximum reduction of up to approximately 42 K in temperature. Temperature error between simulations and experiments is less than 4%, which indicates reliabilities of the simplified model and fuel cooling shell.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Pressure Pulsation and Structural Characteristics of Vertical Shaft Cross-Flow Pumps;Water;2024-01-18

2. Direct Performance Control Method for Turbofan Afterburning Control with a Nonlinear Fuel Supply System;International Journal of Aeronautical and Space Sciences;2023-06-23

3. Research on afterburning control of more electric engine with a nonlinear fuel supply system;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2023-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3