Affiliation:
1. Department of Power, Propulsion and Aerospace Engineering, School of Engineering, Cranfield University, Bedford, UK
Abstract
The aero-thermodynamic effects of water ingestion on an axial flow compressor performance are presented in this article. Under adverse weather conditions, gas turbine engine performance deteriorates and in extreme cases, this performance deterioration may result in flameout or shutdown of the engine, which means that serious incidents or possibly accidents may occur. When the water droplets enter into the engine they break up into smaller droplets which may bounce, coalesce or splash onto the compressor blades. They also form a liquid film whose motion is influenced by inertia forces, blade friction, aerodynamic drag and pressure gradient. The water liquid film has considerable effects on blade’s geometric characteristics. Apart from the change in its profile due to thickness increase, air shear force and water droplets momentum cause waves in water film’s surface introducing a kind of ‘roughness’ on blade’s surface. The current work focuses on the aero-thermodynamic effects. Its methodology is based on computational fluid dynamics, which is used to solve the flow field of the computational domain. The model consists of an extended inlet, an inlet guide vane, a rotor and a stator blade. Several cases with water ingestion are solved, varying the parameter of water mass and engine rotational speed, simulating adverse weather conditions. On the rotor blade, the water film height and speed are calculated at the equilibrium condition. This condition is achieved when the water mass which flows out of the blade surface equals with this which impacts on it. Taking into account the film thickness at each computational node of the blade surface, the blade’s geometry is changed. Furthermore, an equivalent roughness is introduced and the effects on compressor’s performance are calculated. It is found that deterioration is more pronounced in low rotational speed. For 4% water/air, compressor’s isentropic efficiency deteriorates 8.5% for idle speed and 1.6% for full speed. For the same water mass, mass flow capacity deteriorates 2.4% at idle speed while the change is small for full speed.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献