The effect of water ingestion on an axial flow compressor performance

Author:

Nikolaidis T1,Pilidis P1

Affiliation:

1. Department of Power, Propulsion and Aerospace Engineering, School of Engineering, Cranfield University, Bedford, UK

Abstract

The aero-thermodynamic effects of water ingestion on an axial flow compressor performance are presented in this article. Under adverse weather conditions, gas turbine engine performance deteriorates and in extreme cases, this performance deterioration may result in flameout or shutdown of the engine, which means that serious incidents or possibly accidents may occur. When the water droplets enter into the engine they break up into smaller droplets which may bounce, coalesce or splash onto the compressor blades. They also form a liquid film whose motion is influenced by inertia forces, blade friction, aerodynamic drag and pressure gradient. The water liquid film has considerable effects on blade’s geometric characteristics. Apart from the change in its profile due to thickness increase, air shear force and water droplets momentum cause waves in water film’s surface introducing a kind of ‘roughness’ on blade’s surface. The current work focuses on the aero-thermodynamic effects. Its methodology is based on computational fluid dynamics, which is used to solve the flow field of the computational domain. The model consists of an extended inlet, an inlet guide vane, a rotor and a stator blade. Several cases with water ingestion are solved, varying the parameter of water mass and engine rotational speed, simulating adverse weather conditions. On the rotor blade, the water film height and speed are calculated at the equilibrium condition. This condition is achieved when the water mass which flows out of the blade surface equals with this which impacts on it. Taking into account the film thickness at each computational node of the blade surface, the blade’s geometry is changed. Furthermore, an equivalent roughness is introduced and the effects on compressor’s performance are calculated. It is found that deterioration is more pronounced in low rotational speed. For 4% water/air, compressor’s isentropic efficiency deteriorates 8.5% for idle speed and 1.6% for full speed. For the same water mass, mass flow capacity deteriorates 2.4% at idle speed while the change is small for full speed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental and numerical research on flow characteristics of inlet particle separator for aero-engine under the influence of water film;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2023-03-10

2. Aerodynamic performance investigation of an axial flow compressor under water ingestion;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2022-06-21

3. Evaluation of non-uniform water film behavior on the performance of an axial aeroengine compressor;International Journal of Turbo & Jet-Engines;2022-03-10

4. Effects of wetness and humidity on transonic compressor of gas turbine;International Journal of Heat and Mass Transfer;2021-10

5. Evaluation on the performance fluctuation after water ingestion for a turbofan engine compressor during flight descent;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2020-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3