Updating multi-fidelity structural dynamic models for flexible wings with feed-forward neural network

Author:

Huang Yanxin1,Su Weihua1ORCID

Affiliation:

1. Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL, USA

Abstract

In multidisciplinary design optimization of aerospace structures (e.g., a flexible wing), it may be convenient and practical to break such a complex problem into multi-fidelity, multi-stage design problems. Structural model updating is needed in multi-fidelity, multi-stage optimizations to ensure the consistency of models with different fidelity. However, due to the inequality in structural parameters, there exists a fundamental difficulty in the model updating from a lower fidelity model to a higher fidelity model. In this paper, a feed-forward neural network is applied to determine the structural dynamic characteristics of a higher fidelity model based upon a lower fidelity model. The feasibility of this approach is demonstrated by updating beam-like wings to a thin shell-based model and a one-cell wing box model, respectively. The quality and accuracy of model updating using the proposed method are also discussed regarding the neural network structure and sample size.

Funder

NASA Aeronautics Research Mission Directorate, ARMD

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3