An evolutionary optimizing approach to neural network architecture for improving identification and modeling of aircraft nonlinear dynamics

Author:

Roudbari Alireza1,Saghafi Fariborz1

Affiliation:

1. Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In this paper, modified genetic algorithm has been used as a simultaneous optimizer of recurrent neural network to improve identification and modeling of aircraft nonlinear dynamics. Weighted connections, network architecture, and learning rules are features that play important roles in the quality of neural networks training and their generalizability in order to model nonlinear systems. Therefore, the main focus of this paper is to apply appropriate evolutionary methods in order to simultaneously optimize the parameters of neural networks for the improvement identification and modeling of aircraft nonlinear dynamics. To validate this study, the results have been compared with the recorded data from a fourth generation highly maneuverable fighter aircraft flight test. Furthermore, having been compared to normal genetic algorithm, the results of the present study have showed significant improvement of the neural networks generalization which leads to better identification and modeling of aircraft nonlinear dynamics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3