Collaborative strategy research of target tracking based on natural intelligence by UAV swarm

Author:

Yin Shi1ORCID,Wang Xiaofang1,Luo Lianyong1,Pan Nan1,Zhao Da2,Zhang Xiayang3

Affiliation:

1. Kunming University of Science and Technology, Kunming, China

2. Beihang University, Beijing, China

3. Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

Regarding the regional area target collaborative tracking problem widely existing in intelligent scenarios, this paper built a distributed UAV swarm framework inspired by natural intelligence to heighten intricate missions’ efficiency. Also, a standoff collaboratively continuous tracking strategy was proposed based on a lateral guidance law with an improved Reference Point Guidance (RPG) and a longitudinal guidance law with an improved phase collaboration. Under an uncertain environment, this framework used an improved bat algorithm (IBA) to optimize the speed allocation of the UAV swarm’s online control strategy with information consensus estimation. Compared with a case without the designed transformation, statistically, the results demonstrate that the framework operates efficiently and robustly in phase error convergence, swarm flight distance, and fuel consumption, where a dynamic target exists.

Funder

Science and technology plan youth project of Yunnan Science and Technology Department

Talent training project of natural science research foundation of Kunming University of Science and Technology

Publisher

SAGE Publications

Reference32 articles.

1. Law, Socio-Legal Governance, the Internet of Things, and Industry 4.0: A Middle-Out/Inside-Out Approach

2. A Metaverse: Taxonomy, Components, Applications, and Open Challenges

3. Wei P, Guo K, Li Y, et al. Reinforcement learning-empowered mobile edge computing for 6G edge intelligence 2022. Piscataway, NJ: IEEE, 2022, pp. 1–33. https://arxiv.org/abs/2201.11410.2201.11410

4. Distributed Cooperative Search Control Method of Multiple UAVs for Moving Target

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3