Autonomous trajectory planning method for hypersonic vehicles in glide phase based on DDPG algorithm

Author:

Bao Cunyu1ORCID,Wang Peng1,He Ruizhi1,Tang Guojian1

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China

Abstract

An autonomous optimal trajectory planning method based on the deep deterministic policy gradient (DDPG) algorithm of reinforcement learning (RL) for hypersonic vehicles (HV) is proposed in this paper. First, the trajectory planning problem is converted into a Markov Decision Process (MDP), and the amplitude of the bank angle is designated as the control input. The reward function of the MDP is set to minimize the trajectory terminal position errors with satisfying hard constraints. The deep neural network (DNN) is used to approximate the policy function and action-value function in the DDPG framework. The Actor network then computes the control input directly according to flight states. Using a limited exploration strategy, the optimal policy network would be considered fully trained when the reward value reached maximum convergence. Simulation results show that the policy network trained using a DDPG algorithm accomplishes 3-dimensional (3D) trajectory planning during the HV glide phase with high terminal precision and stable convergence. Additionally, the single step calculation time of the policy network occurs in near real time, which suggests great potential as an autonomous online trajectory planner. Monte Carlo experiments prove the strong robustness of the implementation of an autonomous trajectory planner under aerodynamic disturbances.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3