Affiliation:
1. Aeronautics and Astronautics Engineering College, Air Force Engineering University, People’s Republic of China
Abstract
This study considers the situational awareness under complex conditions like aircraft failures or adverse environments. To enhance pilot’s situational awareness, flight safety manipulation space is proposed based on risk prediction. Current methods normally predict the occurrence of accidents by estimating whether the safety-related parameters exceed their limitations. The complex dynamics of pilot–vehicle–environment simulation models are built and the safety-related flight data are represented by risk colors according to their limits. The safety spectrum is then obtained by the integration of the flight data under a certain manipulation action, and the colored risk value for the single flight condition is further acquired. The colored two-dimensional and three-dimensional distribution topology maps can be calculated by a parallel flight simulation platform. The flight safety manipulation space for one-side engine failure and main surface jams are researched and the disaster-causing mechanism is analyzed. Simulation results show that the outbreak failure may lead to the shrink and even distortion of the safety manipulation space. The proposed method could provide a theoretical support for pilots to enhance situational awareness under complex adverse conditions, an engineering tool for aircraft designers to optimize the aircraft performance, and a visualization analysis method to reveal the accident evolution.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献