Mechanism of affecting the axial rotor stability and performance with center offset degrees of axial skewed slots

Author:

Zhang HaoGuang1ORCID,Wang Enhao1ORCID,Liu WenHao1,Chu Wuli12

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi'an, People's Republic of China

2. Collaborative Innovation Center of Advanced Aero-Engine, Beijing, People's Republic of China

Abstract

A subsonic axial rotor with axial skewed slot casing treatment (ASSCT) was investigated with experimental and numerical methods to explore the effects of the center offset degree (Cod) on the rotor stability and performance. Cod is defined as the ratio of the central difference between the rotor tip section and ASSCT to the rotor tip axial chord length. The Cod values are selected as 1.16, 0.608, 0, and −0.36, respectively. When the ASSCT is located upstream, the value of the Cod is positive. The experimental and unsteady calculated results show that the stall margin improvement (SMI) and peak efficiency loss (PEL) are reduced when the slots move to the rotor upstream or downstream. The slots with 0 Cod (ASSCT1) achieve 50% SMI with 8.67% PEL. The slots with 0.608 Cod (ASSCT2) gain 48.5% SMI with 2.12% PEL. The slots with 1.16 Cod (ASSCT3) and −0.36 Cod (ASSCT4) gain −3.41%, 20.1% SMI, respectively. Considering the compromise between the SMI and PEL for the rotor, ASSCT5 was designed by changing the slot number of ASSCT2 from 180 to 90. The unsteady calculated result shows that ASSCT5 can gain 22.28% SMI and 0.485% PEL. The detailed analysis of the flow field in the compressor tip passage indicates that there are adverse effects made by the slots on the flow field near the rotor blade tip leading edge for ASSCT3. Moreover, the ability of reducing the range of low-velocity zones for ASSCT4 is much lower than that for ASSCT1 or ASSCT2, and ASSCT1 generates bigger flow losses in the rotor tip passage than ASSCT2. The positive effects and flow losses made by the slots with 0.608 Cod both become smaller with the slot number decreasing from 180 to 90.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3