Analytical modeling of a cyclorotor in hovering state

Author:

Leger Jakson A1,Páscoa José C1,Xisto Carlos M1

Affiliation:

1. Universidade da Beira Interior, Departamento de Engenharia Electromecânica, C-MAST – Center for Mechanical and Aerospace Sciences and Technologies, FCT Research Unit No. 151, Covilhã, Portugal

Abstract

In the paper it is proposed and described in detail a mathematical model that is able to assist in the design of cycloidal rotors. The method is formulated on a semi-empirical way including unsteady aerodynamic effects that are based on first principles. It is able to predict the overall generated thrust and the power required by the operation of the cycloidal rotor. The model also includes a kinematic package that can provide an instantaneous design and animation of the cycloidal rotor under different regimes of operation. For validation it was addressed three different rotor configurations where it was varied several rotor parameters, namely: pitch amplitude; pitching axis location; blade chord; airfoil thickness; phase angle of eccentricity. It was shown that the proposed model is able to provide a good estimation of thrust and power when compared with the experimental data from these different sources, showing that the semi-empirical approach could be applied in a more general way.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3