Analytical investigation on load sharing characteristics and speed difference of coaxial reverse closed differential herringbone gear transmission system with floating gear and errors

Author:

Han Hao12,Dong Hao12ORCID,Bi Yue12,Zhang Zong-yang12,Ren Bing-xing12

Affiliation:

1. School of Mechatronic Engineering, Xi’an Technological University, Xi’an, China

2. Engineering Research Center of Digital Intelligent Technology of High Performance Gear Transmission of Shaanxi Province, Xi’an Technological University, Xi’an, China

Abstract

To investigate the influence of gear floating on the load sharing characteristics of the Coaxial Reverse Closed Differential Herringbone Gear Transmission System (CRCDHGTS) and the rotational speed difference between the upper and lower rotors, a dynamic Bending-Torsional-Axial-Pendular (BTAP) model of the CRCDHGTS was established using the centralized parameter method, which considers various excitation factors such as gear floating, errors, Time Varying Meshing Stiffness (TVMS), gyroscopic effect, and tooth friction. It considers the interaction between the closed-stage gear set and the differential-stage gear set, treating the herringbone gear as a symmetric helical gear connected through a receding slot. The dynamic model was solved using the Runge-Kutta method to obtain the dynamic meshing forces for each gear pair under single and combined floating modes. The Dynamic Load Sharing Coefficient (DLSC) of the system, which characterizes the Load Sharing Performance (LSP), was deduced. The load sharing characteristics of different floating modes were analyzed, as well as the influence of different floating displacement on the DLSC. The motion path of the gear floating was also determined. Additionally, the impact of manufacturing error and assembly error of each component on the DLSC under combined floating mode was analyzed. Finally, the influence of gear floating on the output rotation speeds of the upper and lower rotors of the system was investigated. The results indicate that both free-floating of the center gear and combined floating can effectively improve the LSP of the system. When the system adopts combined floating mode, the DLSC of inner and outer meshing changes between 0.91 and 1.09, demonstrating a significant improvement in the LSP. The DLSC of the system increases with the increase in error, with the eccentricity error having a greater impact on the DLSC compared to the assembly error. The optimal floating value for the sun gear is between 0.6 mm and 0.8 mm, while for the planetary gear, it is between 0.4 mm and 0.6 mm. The rotational speed difference between the upper and lower rotors can be controlled within 1r/min. These research findings provide a theoretical basis for further analysis of the dynamic stability and reliability of the system.

Funder

Helicopter Dynamics National Key Laboratory Open Foundation, Nanjing University of Aeronautics and Astronautics

Xi’an Science and Technology Plan Project

National Natural Science Foundation of China

Scientific Research Program Funded by Shaanxi Provincial Education Department

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3