Affiliation:
1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Abstract
An investigation is conducted into the effects of dimensional variation, material selection, and manufacturing process on the performance characteristics of a self-oscillating fluidic oscillator. Measurements of oscillation frequency, inlet pressure, and jet profile are performed for actuators having varying nozzle and cavity dimensions. Actuators made of aluminum and carbon fiber reinforced polyetherketoneketone are tested, and the effects of varying manufacturing processes between machining, selective laser sintering, stereolithography, and injection molding are assessed. Models based on dimensionless variables are used to characterize the variation in frequency and inlet pressure for a given mass flow rate. Variation of the nozzle geometry and cavity shoulder width influence the oscillation frequency, and variation of nozzle geometry affects the required driving pressure. Dimensional variations due to manufacturing process tolerances are found to affect actuator performance characteristics, while material selection alone does not affect, provided manufacturing to the required tolerances is possible.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献