Study on aerodynamic features of rod thrust vector control for physical applications

Author:

Wu Kexin12ORCID

Affiliation:

1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China

2. Department of Mechanical Engineering, Andong National University, Andong, Republic of Korea

Abstract

Mechanical thrust vector control is a classical and important branch in the vectoring control field, offering an extremely reliable control effect. In this article, a simple technology using a cylindrical rod has been numerically investigated to achieve jet controls for three-dimensional conical axisymmetric nozzles. Complex flow phenomena caused by the cylindrical rod on a flat plate and in a converging–diverging nozzle are elucidated with the purpose of a profound understanding of this technique for physical applications. Published experimental data are used to validate the dependability of current CFD results. A grid sensitivity study is carried through and analyzed. The result section discusses the impacts of three factors on performance, involving the rod penetration height, rod location, and nozzle pressure ratio. Significant vectoring performance variations and flow topologies descriptions are illuminated in full detail. When the rod penetration height changes, this technique has an effective control range, namely H/Rt ≤ 0.4. In this effective control range, the vectoring angle and efficiency increase and the thrust coefficient decreases with a deeper rod insertion. As the rod location moves downstream towards the nozzle exit, the vectoring angle increases and the thrust coefficient decays. Moreover, the direction of jet deflection remarkably varies for diverse rod locations. While the nozzle pressure ratio increases, the vectoring angle initially increases to reach the maximum level and then decays slightly. Meanwhile, the thrust coefficient continuously increases.

Funder

Zhejiang Sci-Tech University Foundation

National Science Foundation of Zhejiang Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3