The influence of nozzle deflection on fluid dynamic and infrared characteristics of a two-dimensional convergent–divergent vectoring exhaust system

Author:

Wang Hao1ORCID,Ji Honghu1,Lu Haohao2

Affiliation:

1. Aero-engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Shenyang Engine Research Institute, Aero Engine Corporation of China, Shenyang, China

Abstract

Superior maneuverability and good infrared stealthy properties are two key points of the future aircraft. A two-dimensional convergent–divergent (2D-CD) vectoring exhaust system can improve the maneuverability of aircrafts and has been widely applied to the latest generation aircrafts. Understanding fluid dynamic and infrared radiation characteristics of the 2D-CD vectoring exhaust systems under different conditions of the nozzle deflection is very crucial, which can provide significant information for the suppression of the infrared radiation property of the 2D-CD vectoring exhaust system. In this paper, by means of computational fluid dynamics, the fluid dynamic and infrared radiation characteristics of the 2D-CD vectoring exhaust system are studied at subsonic cruise status with nozzle deflection angles from 0 to 20°, and the results are compared with those of the baseline axisymmetric exhaust system. The results indicate that the fluid dynamic performance of a properly designed 2D-CD vectoring exhaust system is equivalent to the fluid dynamic performance of the baseline axisymmetric exhaust system. When the nozzle deflection angle is less than 5°, the mass flow and thrust force of the 2D-CD vectoring exhaust system are almost unchanged, and with the increase of the nozzle deflection angles, the mass flow and thrust force decrease rapidly. The thrust force deflection angles lag behind the nozzle deflection angles all the time, and as the nozzle deflection angle increases, the difference between them decreases. The direction of the maximum infrared radiation of the 2D-CD vectoring exhaust system deflects with the deflection of the nozzle, and the mean integrated infrared radiation intensity of the exhaust system decreases with the increase of nozzle deflection angles.

Funder

Research Funds of Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3