Roles of vanes in diffuser on stability of centrifugal compressor

Author:

Zou Wangzhi1,He Xiao1,Zhang Wenchao1,Niu Zitian1,Zheng Xinqian1ORCID

Affiliation:

1. Department of Automotive Engineering, Turbomachinery Laboratory, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China

Abstract

The stability considerations of centrifugal compressors become increasingly severe with the high pressure ratios, especially in aero-engines. Diffuser is the major subcomponent of centrifugal compressor, and its performance greatly influences the stability of compressor. This paper experimentally investigates the roles of vanes in diffuser on component instability and compression system instability. High pressure ratio centrifugal compressors with and without vanes in diffuser are tested and analyzed. Rig tests are carried out to obtain the compressor performance map. Dynamic pressure measurements and relevant Fourier analysis are performed to identify complex instability phenomena in the time domain and frequency domain, including rotating instability, stall, and surge. For component instability, vanes in diffuser are capable of suppressing the emergence of rotating stall in the diffuser at full speeds, but barely affect the characteristics of rotating instability in the impeller at low and middle speeds. For compression system instability, it is shown that the use of vanes in diffuser can effectively postpone the occurrence of compression system surge at full speeds. According to the experimental results and the one-dimensional flow theory, vanes in diffuser turn the diffuser pressure rise slope more negative and thus improve the stability of compressor stage, which means lower surge mass flow rate.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3