Numerical and experimental investigation of the mean and turbulent characteristics of a wing-tip vortex in the near field

Author:

O’Regan Micheál S1,Griffin Philip C1,Young Trevor M1

Affiliation:

1. Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Ireland

Abstract

The near-field (up to three chord lengths) development of a wing-tip vortex is investigated both numerically and experimentally. The research was conducted in a medium speed wind tunnel on a NACA 0012 square tip half-wing at a Reynolds number of 3.2 × 105. A full Reynolds stress turbulence model with a hybrid unstructured grid was used to compute the wing-tip vortex in the near field while an x-wire anemometer and five-hole probe recorded the experimental results. The mean flow of the computed vortex was in good agreement with experiment as the circulation parameter was within 6% of the experimental value at x/ c = 0 for α = 10° and the crossflow velocity magnitude was within 1% of the experimental value at x/ c = 1 for α = 5°. The trajectory of the computed vortex was also in good agreement as it had moved inboard by the same amount (10% chord) as the experimental vortex at the last measurement location. The axial velocity excess is under predicted for α = 10°, whereas the velocity deficit is in relatively good agreement for α = 5°. The computed Reynolds shear stress component 〈 u′v′〉 is in good agreement with experiment at x/ c = 0 for α = 5°, but is greatly under predicted further downstream and at all locations for α = 10°. It is thought that a lack of local grid refinement in the vortex core and deficiencies in the Reynolds stress turbulence model may have led to errors in the mean flow and turbulence results respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of crosswinds and tip configurations on the initial phase of wingtip vortex evolution;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-09-06

2. Large Eddy Simulations of cavitating tip vortex flows;Ocean Engineering;2020-01

3. An assessment of commercial CFD turbulence models for near wake HAWT modelling;Journal of Wind Engineering and Industrial Aerodynamics;2018-05

4. RANS simulation of the tip vortex flow generated around a NACA 0015 hydrofoil and examination of its hydrodynamic characteristics;Journal of Marine Engineering & Technology;2017-06-13

5. A vorticity confinement model applied to URANS and LES simulations of a wing-tip vortex in the near-field;International Journal of Heat and Fluid Flow;2016-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3