Affiliation:
1. Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract
In this study, two new techniques are proposed for accelerating the multi-point optimization of an airfoil shape by genetic algorithms. In such multi-point evolutionary optimization, the objective function has to be evaluated several times more than a single-point optimization. Thus, excessive computational time is crucial in these problems particularly, when computational fluid dynamics is used for fitness function evaluation. Two new techniques of preadaptive range operator and adaptive mutation rate are proposed. An unstructured grid Navier–Stokes flow solver with a two-equation [Formula: see text] turbulence model is used to evaluate the objective function. The new methods are applied for optimum design of a transonic airfoil at two speed conditions. The results show that using the new methods can increase the aerodynamic efficiency of optimum airfoil at each operating condition with about 30% less computational time in comparison with the conventional genetic algorithm approach.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献